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Abstract

Background: Large language models (LLMs) have made a significant impact in medicine and demonstrate 
substantial promise for further development. However, most of the existing research has predominantly centered 
on English-language tasks with lower medical complexity. This underscores the importance of investigating the 
performance of state-of-the-art LLMs in more complex specialties, such as cardiology, and in languages beyond 
English, such as Portuguese.

Objective: This study aimed to evaluate and compare leading LLMs based on their performance on the validated 
cardiology knowledge assessed by the Brazilian Society of Cardiology’s (SBC) Certification Exam.

Methods: This study conducted a comparative analysis of 23 LLMs in the context of the SBC’s Certification Exam. The 
exam consists of 100 multiple-choice questions, 20 of which include images that cannot be processed by all LLMs. 
Therefore, these image-based questions were excluded from the analysis. 

Results: Proprietary LLMs showed a varying performance, with GPT-4o achieving the highest success rate at 62.25%, 
followed by Claude Opus at 60.25%. In the medium-sized model category (up to 100 billion parameters), Claude Haiku 
reached 47.25%. Among open-source models, Llama3 70B Instruct scored 53.50% in the large model category (over 
100 billion parameters), while Llama3 8B achieved 36.25% in the small model category (under 20 billion parameters). 

Conclusions: Both proprietary and open-source LLMs underperformed on the test, failing to meet the exam’s cutoff 
score. Although larger models generally achieved better results, some medium-sized models — such as Llama3 70B 
Instruct and Claude Haiku—showed noteworthy results. The LLMs lacked specialized knowledge in cardiology and 
faced challenges in understanding Portuguese, revealing a significant gap in current AI capabilities and emphasizing 
the need for improvements.
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clinical scenarios, allowing for the assessment of the accuracy, 
relevance, and practical utility of LLM-generated responses 
in healthcare settings. However, most of these studies have 
focused on English9,10,12,13 or Chinese,14,15 with limited research 
addressing other languages, such as Arabic or Spanish.16,17

Over half of the global population, including approximately 
293 million Portuguese speakers, remains underrepresented 
in English-centric datasets, posing a major challenge. This 
lack of representation risks amplifying health inequities in 
the application of LLMs in medicine. Health disparities are 
particularly prevalent in regions where English is not the 
primary language. 

This approach underscores a critical gap in capturing 
the diversity of regional diseases,18,19 particularly within the 
Brazilian context. In cardiology — a field requiring specialized 
knowledge due to the complexity and importance of managing 
cardiovascular diseases — there is a noticeable lack of detailed 
analyses on the performance of these tools.

Introduction
Artificial intelligence (AI), particularly large language 

models (LLMs), is transforming numerous fields, including 
medicine.1,2 These advanced platforms demonstrate significant 
potential in supporting diagnosis,3-5 enhancing medical 
education,6 and advancing research in disease management7 
and decision-making.8 Recent studies have explored the 
performance of LLMs on medical proficiency tests to evaluate 
their practical applications.9-13 These tests simulate real-world 
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Performance Benchmarking of Open-Source Large Language Models on the Brazilian Society of Cardiology’s Certification Exam. 
LLM: Large language models.

Central Illustration: Performance Benchmarking of Open-Source Large Language Models on the Brazilian 
Society of Cardiology’s Certification Exam
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Despite global efforts to reduce these gaps, progress has 
been uneven, often hindered by slow advancements toward 
universal health coverage.20 In this context, technology has 
the potential to play a pivotal role.21 The integration of LLMs 
into healthcare systems could serve as a powerful tool for 
addressing and mitigating these inequalities.

This study aims to explore the application of LLMs in 
cardiology by evaluating and comparing the performance 
of 23 LLM platforms. The assessment was conducted using 
the Cardiology Certification Exam — an official certification 
exam for the cardiology specialist title —, administered by 
the Brazilian Society of Cardiology (SBC). Known for its rigor 
and scope, this exam evaluates the comprehensive knowledge 
required for clinical practice in cardiology.

The primary objective is to assess how effectively LLMs 
can address cardiology-related questions, focusing on their 
abilities in interpretation, reasoning, and decision-making 
compared to expert-level standards. Additionally, this study 
emphasizes the challenges and opportunities of deploying 
LLMs in Portuguese-language contexts. It aims to offer valuable 
insights for developing more effective AI tools to improve 
cardiovascular care and support healthcare professionals in 
non-English-speaking countries.

Methods

The Dataset
The 2023 Cardiology Certification Exam (TEC), administered 

annually by the SBC, grants the title of cardiologist to physicians 
trained in Brazil. Eligibility criteria for the examination 
include graduation from a medical school accredited by the 
Brazilian Ministry of Education (MEC) at least four years prior, 
registration with the Regional Medical Council (CRM), and 
possession of a certificate of completion from a cardiology 
residency program.

The examination consists of 100 multiple-choice questions 
covering a broad spectrum of general cardiology topics, 
strategically designed to assess both theoretical knowledge 
and practical competencies. Recognized for its rigor and 
comprehensiveness, the TEC assesses expertise across diverse 
areas in cardiology.22 The questions are divided into three 
categories: memorization-based (50 questions), clinical 
reasoning (30 questions), and image or diagnostic exam 
interpretation (20 questions). 

To attain certification, candidates must achieve a minimum 
score that ranges from 67% to 77%, depending on the strength 
of their professional curriculum. In 2023, approximately 1,000 
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candidates took the exam, with 234 earning certification—an 
approval rate of 23.4%.23

LLM
The study aimed to evaluate the performance of several 

proprietary LLMs and their variants, including Claude Opus, 
Haiku, and Sonnet; GeminiPro 1.5 and 1.0;24 as well as GPT-
4o, GPT-4, and GPT-3.5.25 In addition, 23 open-source LLMs 
were assessed, including Gemma (2B, 7B),26 Llama2 (7B, 13B, 
70B),27 Llama3 (8B, 70B, 70B Instruct),28 Mistral (7B, 8x7B, 
8x22B),29 and Qwen (1.8B, 4B, 7B, 72B).30 These models 
were selected from the Hugging Face LLM performance 
leaderboard,31 resulting in a total of 23 models tested.

The models were deployed on a GPU service using LLMBox 
libraries.32 To optimize performance and resource usage, larger 
models were quantized for testing, while smaller models were 
run in their full configuration. Advanced techniques such as 
retrieval-augmented generation (RAG)33 were not employed 
in this phase but are planned for future studies.

The LLMs were classified by training parameters count, 
generally measured in billions. They were divided into three 
categories: small models (up to 10 billion parameters), medium 
models (up to 70 billion parameters), and large or proprietary 
models. Although larger models entail higher development and 

operational costs, they generally outperformed their smaller 
counterparts. 

Each LLM received identical prompts containing the 
question ID, context, four answer choices, and the command: 
‘Choose the alternative from (A, B, C, D, or E) that best 
answers the question.’ All prompts were in written Portuguese 
to evaluate the model’s proficiency in the language. Table 1 
presents an example of an original prompt in Portuguese, 
along with its English translation.

Metrics
Of the total 100 questions in the 2023 SBC examination, 

20 included visual components and were excluded from the 
evaluation, as most LLMs currently lack the ability to process 
images. The remaining 80 questions were randomly sampled 
and presented to each LLM. This sampling process was 
repeated five times, with each sample applied independently 
to the models. This approach ensures that the average 
performance results are reliable and minimizes potential bias 
in the evaluation.

With 80 questions administered across all 23 models over 
five iterations, a total of 9,200 outputs were generated. Each 
output was compared to the established “ground truth” to 
determine whether the LLM provided a correct or incorrect 

Table 1 – Example of an original Portuguese prompt and an English translated prompt

  Original Prompt English Prompt *

"Question ID" {00c8a70abf166c6034c658f7240bb172

"Context" 
"Em relação à síndrome coronariana aguda (SCA), 

assinale a alternativa correta:"
Regarding acute coronary syndrome (ACS), select the 

correct alternative:

"Options"

"A) Nos pacientes com disfunção renal crônica 
e taxa de filtração glomerular < 15 mL/min, a 
enoxaparina deve ser administrada com dose 

corrigida para 50% da dose inicial."

A) In patients with chronic renal dysfunction and a 
glomerular filtration rate < 15 mL/min, enoxaparin 
should be administered at 50% of the initial dose.

"B) A enoxaparina está contraindicada para 
pacientes com mais de 150 kg."

B) Enoxaparin is contraindicated in patients weighing 
more than 150 kg.

"C) Nos pacientes que receberam enoxaparina na 
sala de urgência, o uso de heparina não fracionada 

na sala de hemodinâmica pode ser considerado 
sem impacto no risco de sangramento."

C) In patients who received enoxaparin in the 
emergency room, the use of unfractionated heparin 
in the catheterization laboratory may be considered, 

without impacting the risk of bleeding.

"D) Para pacientes em uso regular de 
anticoagulantes diretos, a estratégia invasiva 
está contraindicada nas primeiras 24 horas, 

independentemente do cenário clínico."

D) In patients on regular direct oral anticoagulants, an 
invasive strategy is contraindicated within the first 24 

hours, regardless of the clinical scenario.

"E) A utilização da via radial, quando da realização 
de cateterismo/angioplastia, não se mostrou 

efetiva em diminuir sangramento e mortalidade 
comparada à via femoral."

E) The use of the radial route for catheterization/
angioplasty has not proven effective in reducing 

bleeding and mortality compared to the femoral route.

"Ground Truth" "B"; "B";

"Command"
"Escolha a alternativa em A) B) C) D) E) que 

melhor responde ao enunciado."
Choose the alternative from A), B), C), D), or E) that 

best answers the question.

* The English prompt was not used in the project; it serves solely to aid readers' comprehension.
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response. At no point during this study did the models have 
access to the ground truth.

The data analysis revealed four distinct types of outputs 
provided by the LLMs. The first type consisted of a simple letter 
indicating the selected answer. The second type included the 
letter along with a brief explanation. The third type featured a 
detailed explanation followed by the correct answer letter. The 
fourth type consisted of a lengthy response that lacked logical 
coherence with the question context or provided an answer 
entirely in English. Since the aim of this study is to assess the 
medical capabilities of multiple LLMs in the Brazilian context, 
answers in English were deemed unacceptable. Table 2 shows 
examples of these output types.

Given the large volume of 9,200 outputs, manually 
assessing all responses would be highly impractical for a human 
evaluator. To overcome this challenge, a systematic evaluation 
method was developed. 

For types 1 and 2, an uncomplicated text comparison using 
a Regex method34 was employed for classification. For types 
3 and 4, given the length and complexity of the responses, a 
more robust classification approach was required. Two of the 
most advanced LLM classifiers, GPT-4o and Claude Opus, 
were selected for this task. These models had access only to the 
output and the ground truth, with the sole task of determining 
whether the ground truth letter appeared in the output answer. 
They were not provided with any information regarding which 
LLM generated the output or the context of the question. 

Each LLM classified the outputs independently; when they 
agreed on the correctness of the answer, the classification was 
considered final. In cases of disagreement, the answer was 
deemed incorrect due to the complexity involved. Figure 1 
presents a flowchart illustrating this evaluation method.

Results
The 2023 Cardiology Certification Exam, conducted across 

five rounds by 23 of the world’s leading LLMs in November 
2024, resulted in a total of 9,200 outputs. Of these, 44.8% 
were classified as Type 1, 58.3% as Type 2, 11.9% as Type 3, 
and 10% as Type 4. All Type 4 responses were classified as 
incorrect based on the evaluation method. This classification 
directly reflects how effectively each LLM comprehended the 
task presented in Portuguese. Table 3 presents the number of 
each question types for each model.

The performance of each proprietary LLM based on our 
dataset is presented in Table 4. Notably, none of the models 
reached the exam’s passing threshold of 67%. Among the 
proprietary models, GPT-4o achieved the highest success rate 
at 62.25%, followed by Claude Opus with 60,25%, as shown 
in the Center Illustration. In the medium-sized model category, 
Claude Haiku achieved a success rate of 47.25%.

The results of the open-source models are presented in 
Table 5. In the large-sized model category, Llama3 70B Instruct 
achieved a success rate of 53.50%. In contrast, Llama3 8B, 

Table 2 – The four types of outputs

Answer Original English 

Type 1 A; [A]; (A); A.; Letra A A; [A]; (A); A.; Letter A

Type 2 D) Acrescentar fludrocortisona D) Add fludrocortisone

Type 3

Fechamento de comunicação interatrial tipo ostium 
primum: A comunicação interatrial é uma anomalia 

congênita caracterizada por uma comunicação 
entre as aurículas esquerda e direita do coração. 

O cateterismo é uma técnica utilizada para tratar a 
comunicação interatrial, e o provável procedimento 

realizado no paciente é o fechamento da comunicação 
interatrial tipo ostium primum, que é a forma mais 

comum de fechamento da comunicação interatrial. A 
escolha correta é A.

Closure of an ostium primum type atrial septal 
defect: An atrial septal defect is a congenital anomaly 

characterized by a communication between the 
left and right atria of the heart. Catheterization is 
a technique used to treat atrial septal defect, and 

the likely procedure performed on the patient is the 
closure of the ostium primum type atrial septal, which 

is the most common form of atrial septal defect 
closure. The correct choice is A.

Type 4a

Presença de B4, desdobramento paradoxal de 
B2, sopro sistólico em foco mitral e a redução da 

intensidade do sopro após a manobra de Handgrip 
são indicações de insuficiência mitral importante.

Presence of B4, paradoxical splitting of B2, systolic 
murmur at the mitral focus, and reduction in the 

intensity of the murmur after the Handgrip maneuver 
are indications of significant mitral insufficiency.

Type 4b

Explicação: O paciente teve histórico de febre 
reumática e cardite leve aos 18 anos, mas o 

ecocardiograma atual não mostra lesões valvulares 
e apresenta boa função ventricular sistólica. Como o 
paciente está atualmente assintomático e os achados 

do ecocardiograma são normais, não há indicação 
para profilaxia com penicilina de acordo com as 

diretrizes atuais.

 Explanation: The patient had a history of rheumatic 
fever and mild carditis at the age of 18, but the 

current echocardiogram shows no valvular lesions 
and good systolic ventricular function. Since 
the patient is currently asymptomatic and the 

echocardiogram findings are normal, there is no 
indication for penicillin prophylaxis according to 

current guidelines.
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categorized as a small-sized model, achieved a success rate 
of 36.25%. Despite achieving 35% accuracy, Gemma 7B only 
provided “A” as the answer, suggesting that the model may 
have been unable to interpret the questions effectively, instead 
defaulting to the first option it encountered.

Figure 1 – Evaluation Method flowchart.

Discussion 
This study evaluated the performance of the leading 23 

language models in responding to cardiology-related question 
in Portuguese. The results, presented in the Central Illustration 
and Tables 4 and 5, indicate that none of the models exceeded 

Table 3 – Percentage of each question types for each LLM

LLM Type 1 Type 2 Type 3 Type 4

GPT-4o 30% 70% 0% 0%

GPT-4 100% 0% 0% 0%

GPT-3.5 4% 96% 0% 0%

Claude Opus 100% 0% 0% 0%

Claude Sonnet 19% 81% 0% 0%

Claude Haiku 47% 53% 0% 0%

Gemini 1.0 100% 0% 0% 0%

Gemini 1.5 100% 0% 0% 0%

Gemma 2B 0% 100% 0% 0%

Gemma 7B 0% 0% 0% 100%

Qwen 18B 5% 95% 0% 0%

Qwen 4B 16% 84% 0% 0%

Qwen 7B 79% 21% 0% 0%

Qwen 72B 16% 84% 0% 0%

Llama2 7B 0% 37% 45% 18%

Llama2 13B 0% 57% 43% 0%

Llama2 70B 0% 0% 43% 57%

Llama3 8B 99% 1% 0% 0%

Llama3 70B 1% 57% 42% 0%

Mistral 7B 0% 59% 41% 0%

Mistral 8x7B 1% 86% 4% 9%

Mistral 8x22B 7% 92% 1% 0%

Llama3 70B Instruct 100% 0% 0% 0%
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Table 5 – Proprietary models results

LLM Open-Source x 
Proprietary Owner Parameters 

Count (Billions) 
Average 
Accuracy

Standard 
Deviation CI 0.95

Mistral 8x22B Open source Mistral AI 141 47.50% 0.00% 0.00%

Qwen 72B Open Source Alibaba 72 48.75% 0.79% 0.69%

Llama2 70B Open Source Meta AI 70 32.75% 2.67% 2.34%

Llama3 70B Open Source Meta AI 70 44.00% 0.50% 0.44%

Llama3 70B 
Instruct

Open Source Meta AI 70 53.50% 0.50% 0.44%

Mistral 8x7B Open Source Mistral AI 46.7 35.75% 1.27% 1.12%

Llama2 13B Open Source Meta AI 13 21.50% 0.94% 0.82%

Llama3 8B Open Source Meta AI 8 36.25% 0.00% 0.00%

Gemma 7B Open Source Google 7 35.00% 0.00% 0.00%

Qwen 7B Open Source Alibaba 7 26.25% 0.00% 0.00%

Llama2 7B Open Source Meta AI 7 23.25% 0.61% 0.54%

Mistral 7B Open Source Mistral AI 7 30.25% 2.67% 2.34%

Qwen 4B Open Source Alibaba 4 33.00% 1.00% 0.88%

Gemma 2B Open Source Google 2 29.75% 1.22% 1.07%

Qwen 1.8B Open Source Alibaba 1.8 16.75% 0.61% 0.54%

LLM: Large language model.

Table 4 – Proprietary LLM results

LLM Open-Source x 
Proprietary Owner Parameters 

Count (Billions) 
Average
Accuracy 

Standard 
Deviation CI 0.95

GPT-4o* Proprietary Open AI 200 62.25% 1.66% 1.45%

Gemini 1.5* Proprietary Google 200 51.25% 0.00% 0.00%

GPT-4* Proprietary Open AI 175 55.75% 1.00% 0.88%

Gemini 1.0* Proprietary Google 172 46.25% 0.00% 0.00%

Claude Opus* Proprietary Anthropic 150 60.25% 0.50% 0.44%

GPT-3.5* Proprietary Open AI 100 35.75% 2.32% 2.03%

Claude Sonnet* Proprietary Anthropic 70 36.00% 0.94% 0.82%

Claude Haiku* Proprietary Anthropic 20 47.25% 0.50% 0.44%

*The exact sizes of proprietary LLMs are not disclosed. Consequently, the number of parameters attributed to these models is 
based on estimations derived from discussions on online forums. LLM: Large language model.

the exam’s cutoff score of 67%. This outcome is concerning, 
especially considering that most of these models achieve scores 
above 80% when tested in English and within an American 
medical context.17

It is important to note that this is a highly challenging 
specialist exam, with Brazilian practitioners undergoing a 
minimum of 10 years of rigorous medical training before taking 
the test. However, the results remain strikingly low, raising 
concerns about the current capabilities of state-of-the-art LLMs 
when applied to the Brazilian medical field and its specific 

context. Figure 2 presents a comparative graph that illustrates 
the accuracy of the LLMs in relation to their parameter sizes.

Considering the goal of leveraging technology to benefit a 
broader population, applying LLM models in public hospitals 
and healthcare centers in Brazil could be a promising approach. 
These institutions often operate with limited computational 
resources and face funding constraints that hinder investments 
in complex systems. As such, the most effective strategy would 
be to choose an LLM that delivers the best quality while 
maintaining a minimal parameter count. This would optimize 
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performance within available resources and ensure accessibility 
to advanced healthcare tools in underserved areas.

The grey area in Figure 2 highlights the LLMs that offer 
the best cost-benefit ratio for addressing Brazilian medical 
challenges. Among these, the Llama 3 70B Instruct model 
demonstrates a solid performance of 53.5% accuracy given its 
70 billion parameters. However, the standout model is Claude 
Haiku, which achieves 47.25% accuracy with only 20 billion 
parameters. While neither model meets the exam’s cutoff score, 
their results suggest considerable promise, particularly when 
considering their efficient parameter sizes.

It is important to understand the reasons behind such 
poor performance. Considering that output types 3 and 4 are 
generated when the model fails to properly interpret the prompt 
or command, it can be inferred from Table 3 that models such as 
Gemma 7B, Llama2 7B, Llama2 13B, Llama2 70B, Llama3 70B, 
and Mistral 7B struggled with comprehending the command in 
Portuguese. This indicates that these models faced significant 
challenges in accurately processing the task in the given language, 
which led to their lower performance. 

Models like Gemma 7B exhibited a particular issue, where 
they consistently provided only the letter “A” in their answer, 
indicating that when they partially understood the question, 
they defaulted to selecting the first available option. Conversely, 
models like Mistral 7B generated more than 50% of their 
responses in English, failing to deliver appropriate outputs in 
Portuguese. This poses a significant limitation for applying these 
models in the Brazilian public health system, where English 
responses would be unsuitable and undermine the model’s 
effectiveness in real-world medical scenarios. 

Even when the models lack sufficient knowledge to provide 
a correct answer or fail to understand the question, they often 
attempt to generate a response, which is frequently inaccurate. 

In the medical field, this poses a serious risk, potentially leading to 
misdiagnosis or inappropriate treatment, which could potentially 
result in misconduct by a healthcare provider. However, some 
LLMs stood out by acknowledging their limitations, either stating 
they lacked the necessary knowledge or tools to provide the best 
answer. These models included all GPT models, Claude Opus, 
Gemini 1.5 Pro, Llama3 70B, and Mistral 8x7B.

Conclusion 
Both proprietary and open-source LLMs performed 

poorly on the exam, failing to meet the exam’s cutoff 
score, as can be seen in the Center Illustration. In general, 
although larger models tended to outperform smaller ones, 
some medium-sized models, such as Llama3 70B Instruct 
and Claude Haiku, showed relatively strong results given 
their size. The LLMs demonstrated a lack of specialized 
cardiology knowledge and struggled with interpreting and 
providing answers in Portuguese. This reveals a significant 
gap in global AI capabilities, highlighting the need for further 
advancements in both domain-specific knowledge and 
multilingual understanding.

For further studies, a cardiology exam in English could 
be compared to evaluate whether the primary issue lies in 
the lack of cardiology knowledge or in the models’ ability to 
comprehend Portuguese. Parallel investigations are underway 
in other specialized medical fields, and the development 
of a Portuguese-specific medical LLM is being considered. 
However, key challenges in its development include selecting 
an appropriate training dataset, managing computational 
costs, and ensuring high-quality responses. This approach 
aims to pinpoint the underlying challenges and explore 
potential solutions for improving LLM performance in both 
medical domains and languages.

Figure 2 – LLMs parameters size x accuracy. *Proprietary models.
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